Urinary creatinine excretion as a marker of body composition and muscle function in patients with chronic thoracolumbar spinal cord injury
Keywords:
skeletal muscle; urinary creatinine excretion; chronic dorsal lumbar spinal trauma.Abstract
Introduction: Creatinine excretion is an expression of skeletal muscle mass. Its measurement is considered an affordable, sensitive, and effective biomarker for estimating body composition in patients with chronic spinal cord trauma.
Objective: To assess skeletal muscle mass based on urinary creatinine excretion in patients with chronic dorsal lumbar spinal trauma.
Methods: A longitudinal, prospective, and analytical study was conducted on 41 male patients with chronic spinal trauma from T1 to L2, with complete motor spinal cord injury.
Results: Significant changes (p ≤ 0.000) were observed in arm circumference, arm muscle circumference, arm muscle area, and in the creatinine excretion rate. A highly significant change (p ≤ 0.000, t = -5.14) was found in skeletal muscle mass, adjusted for creatinine excretion, according to the lean mass median (kg) of the DEXA Lunar reference population. Significant changes were observed in CD3/CD4 lymphocyte subpopulations in patients with T1 to T6 injuries, where the muscle mass index is below the 3rd percentile (p ≤ 0.028). Increases in CD3/CD8 differences in patients with a muscle mass index below the 3rd percentile (26.8%) showed significant differences (p ≤ 0.021) and ANOVA with F 5.8. Significant increases were observed in the Barthel Index, Catz scale, and ASIA motor score (p ≤ 0.000).
Conclusions: Skeletal muscle mass estimated by urinary creatinine excretion and the creatinine-height index are prognostic indicators that show sensitivity to anthropometric, immunological, and neurofunctional variables during the Neurological Restoration Program.
Downloads
References
1. Forbes GB, Bruining GJ. Urinary creatinine excretion and lean body mass. The American Journal of Clinical Nutrition. 1976;29(12):7. DOI: https://doi.org/10.1093/ajcn/29.12.1359
2. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr. 1983;37(3):16. DOI: https://doi.org/10.1093/ajcn/37.3.478
3. Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB. Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am J Clin Nutr. 1996;63(6):6. DOI: https://doi.org/10.1093/ajcn/63.6.863
4. Oosterwijk MM, den Braber N, Bakker SJL, Laverman GD. Urinary creatinine excretion is an indicator of physical performance and function. J Cachexia Sarcopenia Muscle. 2022;13(2):2. DOI: https://doi.org/10.1002/jcsm.12965
5. Zamora- Pérez F, González Martínez CS, Hernández González E, Díaz de La Fe A, García LujardoY, Santos-Hernández C. Impacto de un programa de restauración neurológica en el estado antropométrico del paciente con trauma medular dorsolumbar. RCAN Rev Cubana Aliment Nutr. 2020 [acceso 08/03/2024],30(2):7. Disponible en: https://revalnutricion.sld.cu/index.php/rcan/article/viewFile/1039/pdf_247
6. Zamora Pérez F, Santos Hernández C, Alvarez CR, Suárez Monteagudo C, Hernández González E, Morúa-Delgado Varela Ld, et al. Influencia de la rehabilitación neuromuscular en el estado nutricional del paciente con trauma raquimedular dorsolumbar. Rev Cuban Aliment Nutr. 2011 [acceso 26/12/2024];21(1). . Disponible en: https://revalnutricion.sld.cu/index.php/rcan/article/view/542
7. Heymsfield SB, McManus C, Smith J, Stevens V, Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr. 1982;36(4):10. DOI: https://doi.org/10.1093/ajcn/36.4.680
8. Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr. 1997;17:31. DOI: https://doi.org/10.1146/annurev.nutr.17.1.527
9. Lee RC, Wang Z, Heo M, Ross R, Janssen I, Heymsfield SB. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr. 2000;72(3):7. DOI: https://doi.org/10.1093/ajcn/72.3.796
10. Kittiskulnam P, Carrero JJ, Chertow GM, Kaysen GA, Delgado C, Johansen KL. Sarcopenia among patients receiving hemodialysis: weighing the evidence. J Cachexia Sarcopenia Muscle. 2017;8(1):9. DOI: https://doi.org/10.1002/jcsm.12130
11. Monteagudo Rodríguez Y, Santana Porbén S, Salabarría González JR. Intervalos locales de referencia para la excreción urinaria de creatinina en niños y adolescentes cubanos. Rev Cubana Aliment Nutr. 2015 [acceso 26/12/2024];25(1). Disponible en: https://revalnutricion.sld.cu/index.php/rcan/article/view/103
12. Zamora Pérez F, Santana Porbén S. Sobre la excreción urinaria de creatinina en pacientes sujetos a rehabilitación neuromotora. Rev Cuban Aliment Nutr. 2022 [acceso 26/12/2024];32(2). Disponible en: https://revalnutricion.sld.cu/index.php/rcan/article/view/1408
13. Zamora Pérez F, Santos-Hernández CM, Bender del Busto JE, González Martínez CS, Terry Zamora AP. Diagnóstico nutricional y neurológico según antigüedad, nivel neurológico y tipo de lesión en paciente raquimedular. Rev Haban Cienc Méd. 2022 [acceso 26/12/2024];21(6). Disponible en: https://revhabanera.sld.cu/index.php/rhab/article/view/4816
14. Gorgey AS, Martin H, Metz A, Khalil RE, Dolbow DR, Gater DR. Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. J Spinal Cord Med. 2016;39(6):13. DOI: https://doi.org/10.1080/10790268.2016.1157970
15. Dionyssiotis Y, Skarantavos G, Petropoulou K, Galanos A, Rapidi CA, Lyritis GP. Application of current sarcopenia definitions in spinal cord injury. J Musculoskelet Neuronal Interact. 2019 [acceso 22/12/2024];19(1):21-9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30839300/
16. Lohman, TG, Roche AF, Martorell, R. Anthropometric standardization reference manual. Human Kinetics Books, Chicago. 1988 [acceso 26/12/2024]. Disponible en: https://www.scirp.org/reference/referencespapers?referenceid=1080812
17. Lukaski HC. Estimation of muscle mass. In: Roche AF, Heymsfield SB, Lohman TG, editors. Human body composition. Champaign: Human Kinetics. 1996 [acceso 26/12/2024]:109-28. Disponible en: https://books.google.com.cu/books/about/Human_Body_Composition.html?id=_WoPgY4KAxgC&redir_esc=y
18. Nash MS, Gater DR Jr. Cardiometabolic Disease and Dysfunction Following Spinal Cord Injury: Origins and Guideline-Based Countermeasures. Phys Med Rehabil Clin N Am. 2020;31(3):21. DOI: https://doi.org/10.1016/j.pmr.2020.04.005
19. World Health Organitation Logo. Working Group. Use and interpretation of anthropometric indicators of nutritional status. WHO Working Group. Bull World Health Organ. 1986 [acceso 26/12/2024].;64(6):12. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC2490974/
20. Cederholm T, Jensen GL, Correia M, González MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle. 2019;38(1):8. DOI: https://doi.org/10.1016/j.clnu.2018.08.002
21. Gurney JM, Jelliffe DB. Arm anthropometry in nutritional assessment: nomogram for rapid calculation of muscle circumference and cross-sectional muscle and fat areas. Am J Clin Nutr. 1973;26(9):7. DOI: https://doi.org/10.1093/ajcn/26.9.912
22. Santos Hernández CM. Resumen de las Guías de diagnóstico biofísico. Rev Cubana Aliment Nutr. 2008 [acceso 26/12/2024];18(2). Disponible en: https://revalnutricion.sld.cu/index.php/rcan/article/view/1136
23. Santos-Hernández C. Criterios de Seguridad y Margen de Riesgo para la evaluación clínica de pacientes Criterios Normativos para el Diagnóstico de Osteoporosis y Composición Corporal en la población cubana [TESIS grado Doctor en Ciencias]; Universidad de La Habana. 2010.
24. Santos Hernández CM. “Male Body Composition and Some Methodological and Conceptualization Insights on Gender and Ancestral Origin”. EC Nutrition. 2023;18(8):3. DOI: https://doi.org/10.31080/ECNU.2023.18.011121
25. Vega J, Huidobro E. Juan P, Guarda FJ. Evaluación de la recolección de orina de 24 horas a partir de la creatininuria: fórmulas para estimarla y su rendimiento. Rev Méd Chile. 2021 [acceso 26/12/2024];149(2):5. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0034-98872021000200242&lng=es
26. Walser M. Creatinine excretion as a measure of protein nutrition in adults of varying age. JPEN J Parenter Enteral Nutr. 1987;11(5Suppl):73S-8. DOI: https://doi.org/10.1177/014860718701100510
27. Khartabil TA, de Frankrijker MM, de Rijke YB, Russcher H. The Sysmex XN-L (XN-350) hematology analyzer offers a compact solution for laboratories in niche diagnostics. Int J Lab Hematol. 2021;43(1):10. DOI: https://doi.org/10.1111/ijlh.13339
28. Barrera RLM, Drago SME, Pérez RJ. Flow cytometry: Link between basic research and clinical applications. Rev Inst Nal Enf Resp Mex. 2004 [acceso 22/12/2024];17(1):13. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=748
29. Rupp R, Biering-Sørensen F, Burns SP, Graves DE, Guest J, Jones L, et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top Spinal Cord Inj Rehabil. 2021;27(2):20. DOI: https://doi.org/10.46292/sci2702-1
30. Mahoney FI, Barthel DW. Funtional Evaluation: The Barthel Index. Md State Med J. 1965 [acceso 22/12/2024];14:61-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/14258950/
31. Catz A, Itzkovich M, Rozenblum R, Elkayam K, Kfir A, Tesio L, et al. A multi-center international study on the spinal cord independence measure, version IV: Rasch psychometric validation. J Spinal Cord Med. 2024;47(5):10. DOI: https://doi.org/10.1080/10790268.2023.2183334
32. Catz A, ItzkovichM, Elkayam K, Michaeli D, GelernterI, Benjamini Y, et al. Archives of Physical Medicine and Rehabilitation 2022;103:430−40. https://doi.org/10.1016/j.apmr.2021.07.811
33. van der Scheer JW, Totosy de Zepetnek JO, Blauwet C, Brooke-Wavell K, Graham-Paulson T, Leonard AN, et al. Assessment of body composition in spinal cord injury: A scoping review. PLoS ONE. 2021];16(5):e0251142. https://doi.org/10.1371/journal.pone.0251142
34. Sumrell RM, Nightingale TE, McCauley LS, Gorgey AS. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. PLoS One. 2018;13(8):e0203049. DOI: https://doi.org/10.1371/journal.pone.0203049
35. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):15. DOI: https://doi.org/10.1093/ageing/afy169
36. Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, Batsis JA, et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes Facts. 2022;15(3):14. DOI: https://doi.org/10.1159/000521241
37. Mahanes D, Muehlschlegel S, Wartenberg KE, Rajajee V, Alexander SA, Busl KM, et al. Guidelines for neuroprognostication in adults with traumatic spinal cord injury. Neurocrit Care. 2024;40(2):12. DOI: https://doi.org/10.1007/s12028-023-01845-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Francisca Zamora Pérez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Cuban Journal of Medicine protects the author's patrimonial rights. However, it is licensed under a Creative Commons Licensehttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ES which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided that the primary source of publication is duly cited. The author always retains his moral rights.
You are free to:
- Share - copy and redistribute the material in any medium or format.
- Adapt - remix, transform and build upon the material
- The license cannot revoke these freedoms as long as you follow the terms of the license.
Under the following terms:
- Attribution - You must give proper credit, provide a link to the license, and indicate if changes have been made. You may do so in any reasonable manner, but not in such a way as to suggest that you or your use is supported by the licensor.
- Non-Commercial Purpose- You may not make use of the material for commercial purposes.
- No Additional Restrictions - You may not apply legal terms or technological measures that legally restrict others from making any use permitted by the license.

